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ABSTRACT

Visual Odometry (VO) has emerged as the go-to navi-
gation solution for space missions, providing a reliable
and efficient means of estimating the motion and state
of unmanned vehicles. Recently, the exploration of po-
tential extraterrestrial lava tubes has garnered significant
attention within space agencies, presenting a captivat-
ing challenge in applied robotics. Navigating through
these unique environments demands a wide Field-of-
View (FoV) to efficiently catch information on the major-
ity of the surroundings; however, the majority of rovers
are equipped with narrow FoV stereo-vision configura-
tions for direct mapping, traversability estimation and
navigation. Conventional earth-based approaches to ex-
pand the FoV often prove unsuitable for space applica-
tions due to power, processing, or technical constraints.
In this paper, we propose an innovative solution: indirect
bi-monocular VO with a non-recovering FoV in order to
make the most effective use of available camera pixels.
Leveraging sliding-window optimisation techniques, we
aim to overcome the inherent difficulties in accurately es-
timating scale in displacement and environment. Our ap-
proach paves the way for achieving robust scale-aware
navigation in a non-overlapping camera configuration,
opening new frontiers for space exploration methodolo-
gies in extraterrestrial lava tubes.
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1. INTRODUCTION

Space exploration robotic faces a significant challenge in
navigating unstructured environments, as they lack the
global positioning and real-time human supervision read-
ily available on Earth. Consequently, robust navigation
solutions relying on embedded sensors have become cru-
cial. A major breakthrough in this field was the imple-
mentation of a Visual Odometry (VO) system during the
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Figure 1: Our Non-Recovering FoV VO principle. A pose esti-
mation module uses both cameras’ front-end and determines if
the current frame is a KeyFrame (KF) or not. If it is a KF, the
scale and the landmarks between the last two KF are refined,
and a local map graph optimization is performed.

Mars Exploration Rover (MER) mission, which utilized
the NavCam stereo rig [GMM02]. This system provided
reliable displacement estimates, overcoming the issues
caused by slippage and corrupted odometers.

The recent discovery of lava tubes on Mars and the Moon
presents new challenges and opportunities. These un-
derground structures offer protection from spatial radi-
ation and impacts, making them potential sites for ex-
traterrestrial human bases. Exploring these caves requires
advanced navigation techniques. On Earth, cave explo-
ration has extensively focused on Simultaneous Local-
ization and Mapping (SLAM) relying on power-intensive
Light Detection and Ranging (LiDAR) devices or offline
solutions [ZB14]. Exploration of underground environ-
ments requires a wide Field-of-View (FoV) for the sens-
ing platform often captured by rotating LiDAR. However,
such solutions require last-generation embedded comput-
ers and are power-consuming.

To address these challenges for space exploration, pas-
sive sensors must be utilized. Hence, we propose a visual
navigation solution for an underground context, utilizing
a non-overlapping bi-monocular system. In our previous
work [DVT22], a low computational cost front-end de-



signed specifically for extreme lighting conditions was
introduced. In this paper, our objective is to explore the
expansion of the FoV to maximize information about the
robot’s surroundings while maintaining a robust and ac-
curate state estimation that preserves accurate scale.

Using multiple cameras has emerged as a promising tech-
nology for robots and vehicles, offering broad FoV and
high resolution. Despite their potential benefits, the
current state-of-the-art SLAM systems primarily focus
on monocular or stereo setups, overlooking the advan-
tages of multi-camera configurations. The idea of utiliz-
ing non-recovering FoV camera setups has been investi-
gated in several works in the robotic community [Ple03]
[CKF+08]. These works predominantly aim to create a
virtual camera from all available sensors or consist of a
dual monocular/stereo configuration. In this paper, we
propose a direct utilization of two monocular cameras
(Figure 1) applied to space robotics to estimate the tra-
jectory and the map at scale, offering a novel approach
to leverage the benefits of multi-camera setups in space.
The contributions of this paper are as follows:

• A VO designed for space exploration with two non-
overlapping cameras,

• A novel approach for scale estimation with synchro-
nized cameras using both robust initialization and
on-the-fly refinement,

• The integration of observations from both cameras
into a single graph-slam approach,

• A validation of our approach on both simulated and
real data. This dataset is accessible online, and to
our knowledge, this is the only dataset with such a
camera setup available for robotic research.

2. RELATED WORK

2.1. Cave Exploration and Visual SLAM

Extensive research has been done on SLAM techniques
in underground environments. Early work by Zlot et
al. [ZB14] introduced a large-scale SLAM methodol-
ogy designed to map a 17 km underground mine, em-
ploying a 2D LiDAR and a high-precision Inertial Mea-
surement Unit (IMU). More recent developments were
showcased in the DARPA Subterranean Challenge, which
highlighted significant progress in multi-robot SLAM for
subterranean exploration. However, the predominant re-
liance on LiDAR technology and high-performance em-
bedded computers characterizes these solutions. A com-
prehensive survey [EBB+22] highlights the urgent need
for research on cost-effective navigation solutions that in-
tegrate vision-based SLAM methodologies.

A first step toward this direction was taken by Kasper et
al. [KMH19] that released the OIVIO dataset: a visual-
inertial benchmark under extreme lighting conditions. It

was recorded on a rover in dark environments like tun-
nels, mines and forests using onboard illumination via
an LED matrix. Pure direct visual methods [EKC17]
and indirect methods [CER+21] were studied, as well as
Visual-Inertial Odometry (VIO) [LLB+14]. Direct meth-
ods perform direct image alignment via photometric error
minimization, while indirect methods extract salient fea-
tures from images to perform bundle adjustment. Overall,
these methods performed well, but the VIO and the direct
method seemed more robust to sudden lighting changes.

However, indirect methods have really interesting prop-
erties, especially concerning computation load, and were
well studied in this context. To make these solutions more
robust to poor lighting conditions, contrast enhancement
techniques such as CLAHE can be applied to input im-
ages [FEM+21]. In [YYY22], several contrast enhance-
ment techniques are applied to ORB-SLAM [MAT17]
on the OIVIO dataset as well as other publicly available
benchmarks. The retained solution is an improved trun-
cated Adaptive Gamma Correction (AGC) with unsharp
masking. The OIVIO dataset was also used to validate
a lightweight back-end for indirect VO based on factor
graph sparsification [DVTV23].

2.2. Non-overlapping field-of-view camera setup

Using a camera setup with non-overlapping FoV is inter-
esting when it comes to state estimation and mapping. It
enables a wider coverage of the surroundings of a robot.
Initially, an interesting theoretical framework for a multi-
camera approach is provided in [Ple03], where a camera
network is represented as a single device using rays to
describe pixels. This work proposes a numerical analysis
of the Fisher Information Matrix of the ego-motion prob-
lem for different camera configurations. They conclude
that a setup made of two cameras facing opposite direc-
tions on the same axis is the one that leverages the most
uncertainties and ambiguities.

However, recovering the scale of the motion from such a
setup is not as trivial as standard approaches using stereo
or bi-mono with a shared FoV setup. In the approaches
from the literature, the transformation between the two
cameras is always known, and even this extrinsic calibra-
tion step is a challenge in itself. For instance, a method
using a fixed target and camera network with a moving
planar mirror is detailed in [KIFP08].

The scale recovery problem was first tackled in
[CKF+08], where a method using a single point asso-
ciation on the second camera retrieves the scale of the
motion of the first camera. The authors noticed that
straight line and Ackermann motions were degenerate
cases for scale estimation, which makes this problem dif-
ficult to tackle in classic VO scenarios. In [KKN+12],
two monocular VO run in parallel while the scale is con-
stantly estimated on a sliding window of keyframes in a
RANSAC scheme. The 6D pose in a common frame is
then retrieved by computing a weighted average of the



two VO poses by their respective covariance that is com-
puted with the Hessian matrix of the BA. A unified ap-
proach, suitable for real-time applications, is proposed in
[WK17] where multi-camera BA is performed thanks to a
complete bootstrapping scheme that initializes both cam-
era 3D positions and landmark depths.

3. METHODOLOGY

We assume that we have two synchronized cameras that
do not share any part of their FoV but whose relative pose
(i.e. the extrinsic) is known. By using the rigid transfor-
mation between the cameras, we can leverage the scale
ambiguity and improve the consistency of the VO. We
note c0Tc′0

, c1Tc′1
∈ SE(3) the motions of the two cameras

between two KeyFrames (KF) and their extrinsic calibra-
tion is given by c0Tc1 .

The overall system is described in Figure 1. The VO
front-end, as well as the graph SLAM back-end, are de-
tailed in [DVT22], this section describes what is specific
for a VO with non-overlapping cameras. These are the
bootstrapping phase, the pose estimation module and the
scale plus map refinement module.

3.1. Initialization of the scale

In the beginning, the camera c0 exhibits a motion c0Tc′0
=

[c0Rc′0
|λ tc′0

c0 ] whose scale λ is unknown. This motion can
be computed using epipolar geometry [HZ03] and leads
to an ambiguous expression of the second camera mo-
tion: c1Tc′1

= c0T−1
c1

c0Tc′0
c0Tc1 . Derivations conducted in

[CKF+08] return a formula for the scale λ derived from
the essential matrix of the views of the second camera.
Considering the two corresponding homogeneous points
x′ ←→ x observed on c1, the scale factor is given by:

λ =−
x′
(

c0RT
c1

[
c0Rc′0

tc1
c0 − tc1

c0

]
×

c0Rc′0
c0Rc1

)
x

x′
(

c0RT
c1

[
tc′0
c0

]
×

c0Rc′0
c0 Rc1

)
x

. (1)

We have implemented this equation in a single-point
RANSAC scheme to fix the scale ambiguity of these
motions. Degenerate motions, which are detailed in
[CKF+08], are detected and ignored. The process is
restarted until a proper motion is performed: the VO can
only begin once the scale is initialized. After initializa-
tion, the scale and the map are refined with a ”scale-only”
bundle adjustment.

3.2. Pose Estimation

The VO front-end performs tracking of 2D keypoints that
can have 3D coordinates if they are from the local map.

...

Figure 2: A factor graph representation of the scale and map
refinement problem. In circles are the variables, and the plain
lines represent the residuals linking variables. The blue vari-
ables are the ones that are optimized, and in red are the visual
residuals that include the scale of the motion between xk−1 and
xk.

2D-3D associations enable the estimation of the 3D pose
of the camera with a Perspective-n-Points (PnP) algo-
rithm. Here we use, for both cameras, the variant P3P
[KSS11] in a RANSAC scheme to calculate wTc0 , wTc1
and their respective covariances Σc0 , Σc1 .

These two poses are then fused to compute the current
poses of the robot in a similar way as in [KKN+12]. For
both cameras, we compute the associated robot pose us-
ing the extrinsic wTr0 =

wTc0
c0Tr and wTr1 =

wTc1
c1Tr.

Then we compute the difference between the two poses
on a tangent space as δ T = wTr0 ⊖ wTr1 ∈ R6. The co-
variances computed with the pose estimator give us the
weight W = Σc0(Σc0 + Σc1)

−1 that is used to fuse the
poses as:

wTr =
wTr0 ⊕Wδ T. (2)

The ⊖ and ⊕ operators come from the SO(3)×R3 man-
ifold that is used to parameterize the poses in our frame-
work; more details are given in [SDA18].

3.3. Scale and Map Refinement

As in [DVT22], when a KF is declared, the 2D points
tracked since the last KF are triangulated and become
part of the SLAM problem. Usually, a reprojection er-
ror minimization is performed on these new landmarks
to refine their 3D coordinates. But here, to guarantee a
consistent scale, we also add the scale of the motion of
a camera in this problem. At timestep i, we note the up-
to-scale motion of camera c0 between the two last KFs
c0Tc′0

(λ ) =
[

c0Rc′0
|λ tc′0

c0

]
and, to remain general, we note

eV

(
wTc, l j

w

)
the visual error of a landmark located at

l j
w ∈ R3 on a camera at pose wTc. The set of landmarks

observed by c0 is noted L0, respectively L1. For a given
landmark l j

w, we note C j the set of cameras from which it
is observed. The refinement consists of finding the solu-
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Figure 3: Two synchronous images from our simulated fisheye
cameras in a cave environment with self-illumination.

tion to the following problem:

argmin
λ ,L0,L1

∑
l j
w∈L0

[
||eV (

wTc0
c0 Tc′0(λ ), l

j
w)||ρΣV

+ ∑
c∈C j

||eV (
wTc, l

j
w)||ρΣV

]

+ ∑
l j
w∈L1

[
||eV (

wTc0
c0 Tc′0(λ )

c0 Tc1 , l
j
w)||ρΣV

+ ∑
c∈C j

||eV (
wTc, l

j
w)||ρΣV

]
.

(3)

Taking into account both sets of landmarks from c0 and
c1, the optimal scale respects the rigid transformation be-
tween the two cameras. The intuition behind this mini-
mization is that this will force the scale to remain stable
if there are many observations from the current local map.
However, when a lot of landmarks are lost, there will be
less error terms from the local map. This will perform a
”new initialization” and correct the scale that may have
gone wrong. A factor graph representation of this prob-
lem is represented in figure 2 to highlight the residuals
involved and the variables that they link. After this step,
the landmarks with visual errors that do not pass a ξ 2 test
are removed from the problem. The robust Huber loss
function ρ is used to mitigate the presence of these out-
liers, and the covariance ΣV for visual observations is set
to the identity.

4. EXPERIMENTAL RESULTS

This section introduces experimental results that allow us
to validate our method on a great variety of scenarios1.
Our algorithm is developed in C++, using the middleware
ROS2 to provide communication with our sensor suite
and the library CERES for non-linear optimization. All
experiments have been performed on a desktop station
equipped with an Intel Core i7, 3.2 GHz clock rate, using
CPU only.

4.1. Simulated Data

We have first tested this approach on data from the simu-
lator Gazebo. The dataset is recorded with fisheye cam-

1The dataset used in this paper is available at
https://doi.org/10.34849/SEVFJB

Figure 4: This is our camera setup. The two FLIR cameras,
whose FoV is drawn in blue, are facing opposite directions. The
extrinsic was computed using the SBG IMU, and the two fish-
eye cameras are not used in the following experiments.

eras mounted on a rover: one is oriented toward the front,
and the other to the rear. The first scenario is an easy
one on a planetary surface with good lighting conditions.
The second scenario is in a cave world inspired by the
virtual DARPA Subterranean challenge [KKV+20] using
onboard illumination for both cameras, which makes it
more challenging. Both trajectories start with a 90-degree
turn that ensures that the scale will be properly initialized.
An extract from our dataset is shown in figure 3.

We have tested three different methods: our full method,
our method without scale refinement, and our VO in
mono mode with a scale initialized as in [CKF+08].
Three metrics were computed to compare these methods.
The Absolute Trajectory Error (ATE) in meters, which is
the error wrt. the aligned ground truth trajectory. The
Relative Angular Error (RAE) in degree is for relative
angular displacement, and the Scale Error (SE) without
units evaluates the ratio between the norm of the transla-
tional displacements:

SE =
1

NKF

NKF

∑
k=1

∣∣∣∣∣1− ||tk
VO||2
||tk

gt ||2

∣∣∣∣∣ , (4)

where tk
VO and tk

gt denote the translation between two suc-
cessive KFs estimated respectively by the VO and the
ground truth system. The alignment between the ground
truth and the estimated trajectories is recovered using 6-
DoF optimization; the scale is never rectified. The results
of this study are summarized in Table 1.

Our full method provides the best results in both ATE and
SE on the two simulated trajectories. The scale refine-
ment module enables a better scale of robot motion that
leads to better overall accuracy. The mono method is per-



Our method Our method w/o scale refinement Mono VO
Scenario ATE(m) RAE(degree) SE ATE(m) RAE(degree) SE ATE(m) RAE(degree) SE
Planetary 0.01 0.28 0.13 0.03 0.30 0.13 0.09 0.31 0.31

Cave 0.02 0.12 0.08 0.10 0.11 0.09 0.47 0.12 0.11
Chariot 1 0.04 0.68 0.09 0.20 0.69 0.17 0.34 0.68 0.28
Chariot 2 0.05 0.76 0.08 0.17 0.71 0.13 0.37 0.75 0.30

Table 1: Performances on both simulated and indoor datasets: the best results for each metric are displayed in bold.
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Figure 5: 2D comparison between our full system, our system
without scale optimization and the ground truth on the chariot1
trajectory.

forming way worse on ATE and SE than the two others,
the scale drift is easily accumulated using a single camera
and performing BA on two cameras (even without scale
refinement) helps a lot to reduce this drift. However, the
RAE metric seems to be similar for all the approaches.
This is logical, a camera can be considered as a bearing-
only sensor whose strength is orientation estimation. Us-
ing additional cameras improves only translational mo-
tion estimation.

4.2. Real Data

To validate our method on real data that may suffer from
calibration noise, we mounted an experimental bench
with two FLIR Blackfly cameras facing opposite direc-
tions on our already existing VIO setup as shown on
figure 4. We performed extrinsic calibration using the
fixed IMU on the bench, and the Kalibr calibration tool-
box [FRS13]. This gives us the two following visual-
inertial calibrations: imuTc0 and imuTc1 . With a simple
transformation chain, we obtain the extrinsic of our non-
overlapping FoV configuration:

c0Tc1 =
imuT−1

c0
imuTc1 . (5)
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Figure 6: Plot of the ratio of the displacement between suc-
cessive KFs evaluated by the VO and by the Motion Capture
system. The top is for the chariot1 scenario and the bottom for
the chariot2 scenario.

4.2.1. Indoor dataset

We first recorded a data set in an indoor environ-
ment equipped with a motion capture system at ISAE-
SUPAERO, Toulouse, France. This provides a precise
pose measurement at a high rate that we consider a
ground truth.

The same conclusions concerning the comparison be-
tween the three methods can be deduced from the table
1 on this real dataset. A comparison between our full
system with and without scale refinement is shown in fig-
ure 5: without scale optimization, the alignment with the
ground truth is impossible due to scale inconsistencies in
the trajectory. One can notice that our full system reaches
decent accuracy on a real setup for trajectories that are
respectively 14m and 20m long. Moreover, as shown in
figure 6, the scale remains consistent all along the trajec-
tory: no drift can be noticed, and the ratio is around the
optimal value of one.

4.2.2. Outdoor dataset

To test our method on a larger scale, two other scenarios
were recorded outdoor on a rover on the campus of ISAE-
SUPAERO. A trajectory named forest is performed under
the trees and on bumpy ground, the illumination condi-
tions are poor, and the scene is highly unstructured. The
other trajectory, square, is recorded on the road around a
building of the campus: it is less challenging in terms of



Length (m) Duration (s) Drift (%)
Forest 108 113 2.1
Square 236 205 0.5

Table 2: Performance of our system and description of the out-
door sequences

Front-
end

Pose
estimator

Scale
refinement BA total

t(ms) 18.6 1.88 8.01 7.52 24.5
Table 3: Timing results on our Desktop computer

motion, but it exhibits poorly textured scenes due to the
tarmac and the sky. The ground truth was obtained via
a differential GNSS system that offers positioning preci-
sion at the centimeter level. The metric evaluated is the
drift, in percentage, that we define as the ATE normal-
ized by the length of the trajectory. A summary of the
performance of our system is provided in table 2. The
drift is around a percent on large-scale scenarios which is
reasonable for exploration scenarios: it is less than the 3
% objective stated in [GMM02]. However, we have no-
ticed that in an extreme case of featureless scenes, our
algorithm was relying only on one of the two cameras for
motion estimation, which have led to a wrong scale es-
timate on several occasion during the forest scenario. In
the square scenario, the scale was consistent all over the
trajectory even with the presence of long straight lines
that are degenerated cases for scale recovery; this can be
observed on figure 7. Moreover, loops were closed in
these scenarios, but our system doesn’t handle loop clo-
sure yet: this may have drastically corrected the drift and
is left for future work.

4.3. Run time analysis

For spatial applications, the computational burden is a
real issue both because of light hardware and limited en-
ergy resources. This algorithm was designed to limit cal-
culations on the front-end [DVT22], however, this cam-
era configuration leads to doubling the size of the map
in comparison to mono or bi-mono setup. Moreover, the
two VO front-ends are not parallelized, which also dou-
bles the run time for feature extraction and tracking.

For this study, we have used the same configuration as in
the previous experiments: 150 keypoints are maintained
in each image, 10 KFs are kept in the sliding window, and
a KF is voted if the average parallax goes over 3 degrees.
The results for each algorithmic step are displayed on ta-
ble 3. Overall, our algorithm runs at 40Hz, which makes
it suitable for real-time, but for the reasons detailed be-
fore, it is slower than our bi-mono VO that can reach 100
Hz.
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Figure 7: Comparison between the VO trajectory and the
ground truth on the square scenario.

5. CONCLUSION AND PERSPECTIVES

This paper has introduced a method to perform scale es-
timation and VO using a pair of non-overlapping FoV
cameras. This work was motivated to enable safe nav-
igation for extraterrestrial Lava Tubes exploration. A
complete study on simulated, indoor and outdoor data
was conducted to demonstrate the performances and the
limitations of our method on a large spectrum of scenar-
ios. However, apart from simulated data, this system was
not tested on a real, large-scale, underground and self-
illuminated scenario. We would like to conduct a more
complete recording campaign to produce a dataset simi-
lar to [KMH19] with our camera setup. We also want to
extend our system, that is limited to state estimation, by
implementing a surface reconstruction module to produce
traversability information.
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